Presence of Root Rot Reduces Stability of Norway Spruce (Picea abies): Results of Static Pulling Tests in Latvia

Kopsavilkums

Storms are the main abiotic disturbance in European forests, effects of which are expected to intensify in the future, hence the importance of forest stand stability is increasing. The predisposition of Norway spruce to wind damage appears to be enhanced by pathogens such as Heterobasidion spp., which reduce stability of individual trees. However, detailed information about the effects of the root rot on the stability of individual trees across diverse soil types is still lacking. The aim of the study was to assess the effect of root rot on the individual tree stability of Norway spruce growing on drained peat and mineral soils. In total, 77 Norway spruce trees (age 50–80 years) growing in four stands were tested under static loading. The presence of Heterobasidion spp. had a significant negative effect on the bending moment at primary and secondary failure of the tested trees irrespectively of soil type. This suggests increased legacy effects (e.g., susceptibility to pathogens and pests due to fractured roots and altered water uptake) of storms. Damaged trees act as weak spots increasing the susceptibility of stands to wind damage, thus forming a negative feedback loop and contributing to an ongoing decline in vitality of Norway spruce stands following storms in the study region in the future. Accordingly, the results support the importance of timely identification of the decayed trees, lowering stand density and/or shortening rotation period as the measures to counteract the increasing effects of storms on Norway spruce stands.

Publikācija
Forests

Līdzīgi