Use of whole tree biomass becomes increasingly more important due to rising demand for renewable energy and materials to replace fossil resources. Therefore, assessment of influence of this approach on hemiboreal forest ecosystem is essential. The aim of our study was to assess the long-term influence of full biomass removal (FBR) on the ground vegetation and soil chemical composition in Scots pine stands. Study sites were located in Vacciniosa, Myrtillosa, and Myrtillosa mel. forest types. Almost half a century from the FBR, it had no notable or significant influence on number of ground vegetation species. Significant differences in overall vegetation composition between stands established after FBR and conventional harvesting (stem-wood removal) were not found by the detrended correspondence analysis (DCA) and analysis of similarities (ANOSIM). In addition, values of Ellenberg and Düll indicators were similar and, in most cases (determined by forest type and parameter), had no significant differences between FBR and the same age control stands. Similarly, no significant differences were found between these stands in soil carbon and nitrogen pools. Thus, there had not been a negative long-term effect of FBR on the hemiboreal Scots pine ecosystem as indicated by ground vegetation and soil.